44 research outputs found

    Exploiting Clinical Trial Data Drastically Narrows the Window of Possible Solutions to the Problem of Clinical Adaptation of a Multiscale Cancer Model

    Get PDF
    The development of computational models for simulating tumor growth and response to treatment has gained significant momentum during the last few decades. At the dawn of the era of personalized medicine, providing insight into complex mechanisms involved in cancer and contributing to patient-specific therapy optimization constitute particularly inspiring pursuits. The in silico oncology community is facing the great challenge of effectively translating simulation models into clinical practice, which presupposes a thorough sensitivity analysis, adaptation and validation process based on real clinical data. In this paper, the behavior of a clinically-oriented, multiscale model of solid tumor response to chemotherapy is investigated, using the paradigm of nephroblastoma response to preoperative chemotherapy in the context of the SIOP/GPOH clinical trial. A sorting of the model's parameters according to the magnitude of their effect on the output has unveiled the relative importance of the corresponding biological mechanisms; major impact on the result of therapy is credited to the oxygenation and nutrient availability status of the tumor and the balance between the symmetric and asymmetric modes of stem cell division. The effect of a number of parameter combinations on the extent of chemotherapy-induced tumor shrinkage and on the tumor's growth rate are discussed. A real clinical case of nephroblastoma has served as a proof of principle study case, demonstrating the basics of an ongoing clinical adaptation and validation process. By using clinical data in conjunction with plausible values of model parameters, an excellent fit of the model to the available medical data of the selected nephroblastoma case has been achieved, in terms of both volume reduction and histological constitution of the tumor. In this context, the exploitation of multiscale clinical data drastically narrows the window of possible solutions to the clinical adaptation problem

    Mathematical modeling of solid cancer growth with angiogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems.</p> <p>Methods</p> <p>We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms.</p> <p>Results</p> <p>The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer.</p> <p>Conclusions</p> <p>Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues) displaying an efficient (numerically and functionally) reparative or regenerative mechanism.</p

    Cell killing and resistance in pre-operative breast cancer chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the recent development of technologies giving detailed images of tumours <it>in vivo</it>, direct or indirect ways to measure how many cells are actually killed by a treatment or are resistant to it are still beyond our reach.</p> <p>Methods</p> <p>We designed a simple model of tumour progression during treatment, based on descriptions of the key phenomena of proliferation, quiescence, cell killing and resistance, and giving as output the macroscopically measurable tumour volume and growth fraction. The model was applied to a database of the time course of volumes of breast cancer in patients undergoing pre-operative chemotherapy, for which the initial estimate of proliferating cells by the measure of the percentage of Ki67-positive cells was available.</p> <p>Results</p> <p>The analysis recognises different patterns of response to treatment. In one subgroup of patients the fitting implied drug resistance. In another subgroup there was a shift to higher sensitivity during the therapy. In the subgroup of patients where killing of cycling cells had the highest score, the drugs showed variable efficacy against quiescent cells.</p> <p>Conclusion</p> <p>The approach was feasible, providing items of information not otherwise available. Additional data, particularly sequential Ki67 measures, could be added to the system, potentially reducing uncertainty in estimates of parameter values.</p

    Spotlight on cancer informatics

    No full text
    corecore